
POLYNOMIAL DESIGN METHODS AND A SIGNAL

PROCESSING APPLICATION �

Martin Hrom�c��k, Michael �Sebek

Centre for Applied Cybernetics,

Czech Technical University, Prague, Czech Republic

Abstract

The use of the MATLAB environment and the Polynomial Toolbox for Matlab capabilities are
demonstrated in a speci�c signal processing application. A new algorithm is described for the spectral
factorization of a two-sided symmetric polynomial. The method is based on the discrete Fourier
transform theory (DFT) and its relationship to the Z-transform. Involving DFT computational
techniques, namely the famous fast Fourier transform routine (FFT), brings high computational
eÆciency and reliability. The power of the proposed procedure is employed in a particular practical
application. Namely the problem of computing an H2-optimal inverse dynamic �lter to an audio
equipment is considered as it was proposed by M. Sternad and colleagues in [17] to improve behavior
of moderate quality loudspeakers. Involved spectral factorization is resolved by our new method and
its performance is compared with existing algorithms.

1 Introduction

A two-sided polynomial

m(z) =

dX

i=�d

miz
i;

where mi are complex numbers, is said to be discrete-time symmetric if it equals its adjoint m�(z)

de�ned as m�(z) = m(�z�1) =
Pd

i=�dmiz
�i. Here the bar stands for complex conjugate. Clearly, m(z)

is symmetric if m�i = mi. It is also evident that the symmetry makes m(z) real for jzj = 1. In addition,
we require m(z) being positive here. The spectral factor of such m(z) is then the one-sided polynomial
x(z) = x0 + x1z

�1 + � � � + xdz
�d such that m(z) = x(z)x�(z) holds and x(z) is Schur stable, that is,

has all its roots zi inside the unit circle in the complex plane. Up to the sign, the problem has a unique
solution.

A matrix equivalent to the scalar case is the computation of the spectral factor X(z) = X0+X1z
�1+

� � �+Xdz
�d to a discrete-time para-Hermitian two-sided polynomial matrix

M(z) =

dX
i=0

(Miz
i +M

T

i z
�i);

nonsingular for jzj = 1. Here X(z) is required to be Schur-stable again and to ful�ll the equation

M(z) = X(z)XT (�z�1).

�This work has been supported by the Ministry of Education of the Czech Republic under contract No. LN00B096.

MatlabTM is a registered trademark of The MathWorks Inc. Polynomial Toolbox for MatlabTM is a trademark

of the PolyX, Ltd. MathematicaTM is a registered trademark of The Wolfram Research, Inc. Polynomial Toolbox is a

trademark of the PolyX Ltd.



If we restrict ourselves to real coeÆcients only, the formulas for the adjoint operator reduce tom�(z) =

m(z�1) =
Pd

i=�dmiz
�i and M�(z) = MT (z�1) =

Pd

i=�dM
T
i z

�i respectively whereas the symmetry

condition reads m�i = mi or M�i =MT
i respectively.

The spectral factorization is one of the basic operations in the polynomial approach to the synthesis
of linear control systems [4, 5] and �lters [15, 16, 17]. It is a part of the procedure of quadratic functional
minimization under a condition of causality. Particular forms of the functional to be minimized lead
to some well known control design problems, such as Wiener �ltering, linear-quadratic controller (LQ),
quadratic optimal observer (Kalman �lter), linear-quadratic controller with Gaussian noise (LQG) and
some others. All these tasks, being solved via polynomial methods, involve spectral factorization as the
crucial computational step [4, 5].

2 Existing methods

In any case, the spectral factor for d � 5 cannot be achieved by a �nite number of algebraic operations.
Therefore all numerical algorithms for its computation are iterative and give just an approximation to
the genuine factor. Some existing approaches to this problem are mentioned in this section.

The most natural way is based on the computation of roots of a polynomial. Obviously, m(z) being a
symmetric two-sided polynomial yields m?(z) = z�dm(z) to be a one-sided polynomial in z�1 with roots
symmetric with respect to the unit circle in the complex plane. The roots of m?(z) (all are nonzero) are
the zeros of m(z).

This idea can be directly used to evaluate the spectral factor. Having determined the roots r1; r2; : : : ; rd
of m?(z) via any standard procedure for polynomial roots [3] and considering that m(z) 6= 0 for all jzj = 1
by assumption, one can divide the roots into two groups R� = fri : m

?(ri) = 0; jrij < 1g; R+ = fri :
m?(ri) = 0; jrij > 1g. Clearly, R� is the set of roots of the spectral factor x(z) and having this set at
hand the factor itself can be easily constructed.

Taking the symmetry of roots into account, a more sophisticated procedure can be suggested in the
real case. By introducing a new variable y = z + z�1, the two sided symmetric polynomial

m(z) = mdz
�d + � � �+m0 + � � �+mdz

d

can be rewritten as
m(z) = p(y) = p0 + p1y + � � �+ pdy

d

with p being a one-sided polynomial only. In this way the degree of input is reduced by one half. The
coeÆcients of p(y) and m(z) are linearly dependent.

At any rate, performance of this procedure heavily hinges on the accuracy of the computed polynomial
roots. If these roots are distinct and separated enough, standard numerical routines [3] can determine
them with good precision. However, it is well known that the relative accuracy of a computed root
decreases as its multiplicity grows [3], and so does the accuracy of the spectral factor thus obtained.

In addition, if the degree of the involved polynomial is high, say over one hundred, the very compu-
tation of the spectral factor coeÆcients is problematic due to rounding errors. It means that even if the
desired roots of the spectral factor are evaluated with good accuracy, its particular coeÆcients, which are
typically required in applications, are not accurate.

Needless to say, this approach is not directly applicable in the matrix case.
For these reasons, attention was paid to the development of other routines that avoid the direct

roots evaluation. One such procedure, relying on successive Newton-Raphson iterations and solutions of
symmetric polynomial equations, was published in [11] and is implemented in the Polynomial Toolbox 2.0
for Matlab [6]. Other methods are based on the formulation of the problem in terms of the state-space
theory and its solution via algebraic Riccatti equations, or employ interpolation [9]. Recently some new
approaches to spectral factorization have appeared based on the analysis of quadratic forms [10]. All
these techniques can also be extended to the matrix case.

In the next sections we will described a new approach to the problem. It is based on the DFT
theory and provides both a fruitful view on the relation between DFT and the Z-transform theory, and
a powerful computational tool in the form of the fast Fourier transform algorithm.

3 Discrete Fourier Transform

For a vector of complex numbers, DFT is de�ned as follows:



De�nition 1 (see [2, 1]) - direct DFT:
If p = [p0; p1; : : : ; pN ] is a vector of complex numbers, then its direct DFT is given by the vector y =
[y0; y1; : : : ; yN ], where

yk =
NX
i=0

pie
�j 2�k

N+1
i (1)

The vector y is called the image of vector p. �

De�nition 3.2 (see [2, 1]) - inverse DFT:
If y = [y0; y1; : : : ; yN ] is a vector of complex numbers, then its inverse DFT is given by a vector p =
[p0; p1; : : : ; pN ], where

pi =
1

N + 1

NX

k=0

yke
j 2�i
N+1

k (2)

�

If y is an image of p, then the formula (2) returns the original vector p [2, 1]. Hence the relation (2) is
inverse to relation (1).

DFT is of great interest in various engineering �elds. For its relationship to Fourier series of sampled
signals, DFT is frequently used in signal processing [2]. One of the experimental identi�cation methods
employs DFT as well [7]. The close relationship of DFT to interpolation is also well known and was used
recently to solve some tasks of the polynomial control theory [12, 13] and to treat robustness analysis
problems of certain kind [14].

For numerical computation of DFT, the eÆcient recursive FFT algorithm was developed by Cooley
and Tukey in 1965 [2], [1]. If the length of the input is a power of two, a faster version of FFT (sometimes
called radix-2 FFT) can be employed [2, 1]. In general, the FFT routine features a highly bene�cial
computational complexity and involves O(N log(N)) multiplications and additions for a vector of length
N .

For the importance of DFT mentioned above, the FFT algorithms are naturally available as built-
in functions of many computing packages (Matlab

TM, Mathematica
TM etc.). This is another good

reason for employing the procedure proposed in this paper.

4 Spectral Factorization and DFT

4.1 Theory

Given a symmetric polynomial

m(z) = mdz
d + � � �+m1z +m0 +m1z

�1 + � � �+mdz
�d ;

positive for jzj = 1, we look for a Schur stable polynomial

x(z) = x0 + x1z
�1 + � � �+ xdz

�d

to satisfy
x(z)x(z�1) = m(z) :

In order to solve the equation, we can logarithmize it. As m(z) is analytic and nonzero in 1 � " <
jzj < 1 + " while x(z) is analytic and nonzero in 1� " < jzj including z = 1, the logarithms exist. Let
us denote them as

lnx(z) = y(z); lnm(z) = n(z) :

Here n(z), obtained from the given m(z), is a symmetric (in�nite) power series

n(z) = � � �+ n1z + n0 + n1z
�1 + � � � :

It can be easily decomposed,
n(z) = y(z) + y(z�1)

with power series

y(z) = y0 + y1z
�1 + � � � =

n0
2

+ n1z
�1 + � � � ;



analytic for 1� " < jzj. Once y(z) is computed, the spectral factor x(z) is recovered as

x(z) = ey(z) = x0 + x1z
�1 + � � � : (3)

Since y(z) is analytic in 1� " < jzj, so is x(z) and hence it can be expanded according to (3). Moreover,
as a result of exponential function, x(z) is nonzero in 1�" < jzj. In other words, it has all its zeros inside
the unit disc and is therefore Schur stable. Note also that x(z) has to be a (�nite) polynomial of degree
d (due to the uniqueness of the solution to the problem which is known to be a polynomial) though y(z)
is an in�nite power series.

4.2 Numerical Algorithm

Numerical implementation follows the ideas considered above. A polynomial p(z) is represented by its
coeÆcients pi; i = 0 : : : r or, equivalently, by function values Pk in the Fourier interpolating points

gk; k = �R : : : 0 : : : R, where R � d; g = ej
2�

2R+1 . Accordingly, a power series can be approximated
by a �nite set of its coeÆcients or by its values in a �nite number of interpolation points on the unit
circle. Some operations of the procedure, namely the decomposition of n(z) into y(z) and y(z�1), are
performed in the time domain (operations on coeÆcients), while the others (evaluation of logarithmic
and exponential functions) are executed in the frequency domain (operations with values over jzj = 1).
Mutual conversion between the two domains is mediated by the shifted discrete Fourier transform operator
de�ned as

Xk =

RX
i=�R

xig
�ki; xi =

1

2R+ 1

RX

k=�R

Xkg
ki ;

which approximates the Z-transform by dealing with �R � i � +R instead of in�nite �1 < i < +1,
and with z = gk; �R � k � +R instead of continuum z = ej�; � � � � � +�.

The accuracy of results depends on the number of interpolation points 2R + 1 involved in the com-
putation. This number can be considered as a simple tuning knob of the computational process.

Resulting numerical routine looks then as follows:

Algorithm 1: Scalar discrete-time spectral factorization.

Input: Scalar symmetric polynomial
m(z) = mdz

d + � � �+m1z +m0 +m1z
�1 + � � �+mdz

�d, positive for jzj = 1.

Output: Polynomial x(z) = x0 + x1z
�1 + � � �+ xdz

�d, the spectral factor of m(z).

Step 1 - Choice of the number of interpolation points.
Decide about the number R. R approximately 10 to 50 times larger than d is recommended up to
our practical experience.

Step 2 - Direct FFT (I):
Using the FFT algorithm, perform direct DFT, de�ned by (1), on the vector

m = [m0;m1; : : : ;mn; 0; 0; : : : ; 0;mn; : : : ;m1| {z }
2R+1

]

In this way, the setM = [M0;M1; : : : ;M2R] of the values of m(z) at the Fourier points is obtained.
Owing to the symmetry of m(z) and assuming m(z) with real coeÆcients only, M is symmetric and
real as well.

Step 3 - Logarithmization:
Compute the logarithmsNi = ln(Mi) of all particularMi's and form the vectorN = [N0; N1; : : : ; N2R]
of them. Ni's thus obtained are the values of the function n(z) = ln(m(z)) at related Fourier points
on the unit complex circle.

Step 4 - Inverse FFT (I):
To get the vector
n = [n0; n1; : : : ; nR; nR; : : : ; n1], containing the coeÆcients of the two-sided symmetric polynomial
n(z) = nRz

�R + � � �+ n1z
�1 + n0 + n1z + � � �+ nRz

R approximating the power series ln(m(z)) for
the given R, perform inverse DFT, de�ned by (2), on the vector N using the FFT algorithm.



Step 5 - Decomposition:
Take the "causal part" y of n:
y = [n0=2; n1; : : : ; nR].

Step 6 - Direct FFT (II):
Evaluate y(z) = n0=2 + n1z

�1 + : : :+ nRz
�R at the Fourier points by applying direct FFT on the

set
[
n0
2
; n1; : : : ; nR; 0; 0; : : : ; 0

| {z }
2R+1

]

and get Y = [Y0; : : : ; Y2R].

Step 7 - Exponential function:
To get the spectral factor, the exponential function x(z) = ey(z) remains to be evaluated. First we
compute the values of x(z) at the Fourier points: X = [eY0 ; : : : ; eY2R ].

Step 8 - Inverse FFT (II):
Finally, the coeÆcients x = [x0; : : : ; x2R] of x(z) are recovered by inverse FFT performed on the
vectorX. The resulting approximation to the spectral factor x(z) then equals x(z) = x0+x1z

�1+
� � �+ xdz

�d: �

Note that one obtains 2R + 1 coeÆcients of x(z) = x0 + x1z
�1 + � � �x2Rz

�2R in the Step 8. However,
x(z) being the spectral factor of m(z) is known to be of degree d only and only the �rst d+1 coeÆcients
of x(z) should be signi�cant as a result while the remaining ones should be negligible. As the number
R increases, these values theoretically converge to zero indeed since the formulas of DFT become better
approximations to the Z-transform de�nitions.

5 Computational Complexity

Thanks to the fact that the fast Fourier transform algorithm is extensively used during the computation,
the overall routine features a expedient computational complexity.

Provided that the above modi�cations of the computational procedure are considered, namely if the
resulting number of interpolation points is taken as a power of two, the fast radix-2 FFT can be employed.
In this case, (R log2R)=2 multiplications and R log2 R additions are needed to evaluate either direct or
inverse DFT of a vector of length R [1]. Let us suppose in addition that computing the logarithm or
exponential of a scalar constant takes at most k multiplications and l additions. Then the particular
steps of the modi�ed Algorithm 1 involve (R log2R)=2 multiplications and R log2R additions (Steps 2,
4, 6, 8), and kR multiplications and lR additions (Steps 3, 7) respectively. Hence the overall procedure
consumes

4
R logR

2
+ 2kR = 2R logR+ 2lR

complex multiplications, and
4R logR+ 2lR

complex additions. By inspecting the above formulas one can see that asymptotically the proposed
method features O(R logR) complex multiplications and additions.

6 Implementation and Practical Experience

The algorithm has been implemented in MATLAB, using the standard routine for the fast Fourier trans-
form (fft command). This program has also been evaluated by the PolyX company, the producer of
the Polynomial Toolbox for Matlab [6], and a decision was made recently to incorporate the code in the
spectral factorization solver of the Toolbox in the next version 3.

The practical experience is very good. Though the complete routine seemingly issues a high number
of manipulations, it is pretty fast thanks to the computational eÆciency of the FFT algorithm. It runs
many times faster than the Newton-Raphson iterations procedure as it is programmed in the Polynomial
Toolbox 2.0 for Matlab [6], returning results of comparable accuracy. The execution times are similar
with the method based on direct evaluation of roots, however, in the case of multiple roots, and namely



for high degrees, the accuracy of the newly proposed method is much better provided the number of
interpolation points is adequately chosen.

These observations are based on practical experiments with real life data. To be more speci�c,
we present one practical signal processing application in the next section involving the spectral factor
extraction and provide its e�ective solution via our new routine.

7 Upgrading Loudspeakers Dynamics

An original approach has been published by Sternad et al. in [17] how to improve performance of an
audio equipment at low additional costs. The authors use the LQG optimal feedforward compensator
technique to receive an inverse dynamic �lter for a moderate quality loudspeaker. By attaching a signal
processor implementing this �lter prior to the loudspeaker, the dynamical imperfections of the original
device are eliminated and the overall equipment behaves as an aparatus of a much higher class. To learn
more about this research and to get some working examples, visit [18].

Unlike their predecessors, the authors try to modify the sound over the whole range of frequencies.
Such a complex compensation fully employs the increasing performance of signal hardware dedicated to
CD-quality audio signals, and at the same time calls for fast and reliable spectral factorization solvers
[17]. We believe our new algorithm will signi�cantly contribute to this goal.

The loudspeaker dynamics is considered in the form of an ARX model

y(t) = z�k
B(z)

A(z)
u(t):

Since the impulse response is rather long for a high sampling frequency (CD-quality standard of 44 kHz
was used), both the numerator and denominator of the model are of high orders, say one to �ve hundred.

The model has an unstable inverse in general since some of its zeros may lie outside the unit disc.
Hence a stable approximation has to be calculated to be used in the feedforward structure. The authors
recall the LQG theory and seek for a compensating �lter

u(t) =
Q(z)

P (z)
w(t)

such that the criterion
J = Ejy(t)� w(t � d)j2 + �ju(t)j2

For broadband audio signals, the optimal �lter is given in the form

u(t) =
Q1(z)A(z)

�(z)
w(t)

where � results from the spectral factorization

��� = BB� + �AA�

and Q1 is the solution of a subsequent Diophantine equation

qk�dB�(q) = r��(q)Q1(q
�1) + qL�(q);

see [17].
As for the spectral factor computation, the authors employ the Newton-Raphson iterative scheme [11]

in the cited work [17]. According to their results and our experience, this method has been probably
the best available procedure for scalar polynomial spectral factorization so far [17, 6]. This method
works quite well also for high degrees of involved polynomials in contrast to the straightforward way of
computing and distributing the roots of BB� + �AA�.

Let us perform a benchmark experiment to compare the existing approach and our newly proposed
algorithm for particular numerical data kindly provided by Mikael Sternad and colleagues from the
University of Uppsala. In particular, B(z) = B0 + B1z

�1 + � � � + B250z
�250 is an unstable polynomial

of degree 250, A(z) is stable of degree 90 and k = 160. Taking � = 0, the spectral factorization of
m(z) = B(z)B�(z) = m250z

�250 + : : :+m0 + : : :+m250z
250 is to be performed.

All presented experiments were realized on a PC computer with Pentium II/400MHz processor and
128 MB RAM, under MS Windows 98 in MATLAB version 5.3. Implementation of particular routines is
speci�ed below:



� Method ITER(N): The Newton-Raphson iterative method is programmed in the function spf of
the Polynomial Toolbox for Matlab [11]. This macro is used in our experiment. Several cases are
considered depending on the number of iterations N .

� Method FFT(R): The method which is the subject of this paper has given rise to a function
programmed in the MATLAB programming language. The R parameter determines the number
2R of Fourier interpolation points used in particular runs.

Results of this experiment for various values of the parameters N and R are summarized and related
in the following table. Namely, the computational time, total number of 
oating point operations and
accuracy of results are of interest. To obtain the former two characteristics, the MATLAB abilities were
employed (the built-in functions tic/toc and flops respectively). The computational error is de�ned
here as the largest coeÆcient of the expression ��� �m, evaluated in the MATLAB workspace, divided
by the largest coeÆcient of m (all in absolute value).

Time [s] Flops Accuracy

ITER(7) 18 sec 7:8 � 108 5 � 10�5

FFT(10) 0.01 sec 9:7 � 104 5 � 10�5

ITER(8) 20 sec 1:4 � 109 4 � 10�6

FFT(11) 0.02 sec 3:6 � 105 3 � 10�6

ITER(9) 22 sec 1:6 � 109 3 � 10�8

FFT(12) 0.05 sec 1:6 � 106 2 � 10�8

ITER(10) 26 sec 1:8 � 109 10�11

FFT(13) 0.11 sec 5:5 � 106 2 � 10�11

Table 1: Accuracy and eÆciency of compared algorithms.

These tests prove the power of the new algorithm in such tough examples. By checking the above table,
one can see that it typically consumes more than 100 times less computational time than its competitor
and involves 1000 times fewer elementary operations to achieve comparable accuracy of results.

Just for completeness, the results for direct-roots-evaluation approach are also presented. The sym-
metry of m(z) was taken into account to reduce its degree by the transform z ! z + z�1 as described
in section 2. The roots were evaluated as the eigenvalues of related companion matrix by the Matlab
command roots, see [19].

Time [s] Flops Accuracy

ROOTS 2 sec 1:6 � 108 0.9

Table 1b: Accuracy and eÆciency of the direct method.

As it was pointed out before, the direct method cannot be recommended for high degrees since its
precision becomes poor. In fact, the high accuracy value 0:9 in the Table 1b means that the error of
computation is of about the same magnitude as the input which is a hardly acceptable result (compare
with Table 1a). In addition, the method is rather slow in comparison with the FFT based routine.

8 Conclusion

A new method for the discrete-time spectral factorization problem in the scalar case has been proposed.
The new method relies on numerically stable and eÆcient FFT algorithm. Besides its good numerical
properties, the derivation of the routine also provides an interesting look into the related mathematics,
combining the results of the theory of functions of complex variable, the theory of sampled signals, and
the discrete Fourier transform techniques. Its numerical properties are discussed with respect to other
existing algorithms and its power is utilized in a practical signal processing application.

References

[1] Bini D., Pan V., Polynomial and Matrix Computations, Volume 1: Fundamental algorithms,
Birkh�auser, Boston (1994).

[2] �C���zek V., Discrete Fourier Transforms and Their Applications, Adam Hilger Ltd, Bristol and Boston
(1986).



[3] Higham N. J., Accuracy and Stability of Numerical Algorithms, S.I.A.M., Philadelphia (1996).

[4] Kailath T., Linear Systems, Prentice Hall, New Jersey (1980).

[5] Ku�cera V., Analysis and Design of Discrete Linear Control Systems, Academia Prague (1991).

[6] Kwakernaak H., �Sebek M., PolyX Home Page,
http://www.polyx.cz/, http://www.polyx.com/.

[7] Ljung L., System Identi�cation: Theory for the User, Prentice-Hall Information and Systems Sci-
ences Series. Englewood Cli�s, Prentice-Hall (1987).

[8] Kwakernaak H., �Sebek M, Polynomial J-Spectral Factorization, IEEE Trans. Automatic Control,
Vol. 39, No.2, pp. 315-328 (1994).

[9] Green M., Glover K, Limebeer D. and Doyle J., A J-spectral Factorization Approach to H1 control,
SIAM J. on Contr. Opt., vol. 28, pp. 1350-1371 (1990).

[10] Kaneko O. and Fujii T., Discrete Time Behavioral Dissipativeness and Spectral Factorization via
Quadratic Di�erence Forms, Proceedings of the 5th European Control Conference ECC'99, Karl-
sruhe, Germany, October 31 - September 3 (Session BA9), 1999.

[11] Je�zek J. and Ku�cera V., EÆcient Algorithm for Matrix Spectral Factorization,Automatica, vol. 29,
pp. 663-669, 1985.

[12] Hrom�c��k M., �Sebek M., New Algorithm for Polynomial Matrix Determinant Based on FFT, Pro-
ceedings of the 5th European Control Conference ECC'99, Karlsruhe, Germany, October 31 -
September 3 (Session DA1), 1999.

[13] Hrom�c��k M., �Sebek M., Numerical and Symbolic Computation of Polynomial Matrix Determinant,
Proceedings of the 38th Conference on Decision and Control CDC'99, Phoenix AZ, USA, December
7-10, 1999.

[14] Hrom�c��k M., �Sebek M, Fast Fourier Transform and Robustness Analysis with Respect to Parametric
Uncertainties, Proceedings of the 3rd IFAC Symposium on Robust Control Design ROCOND 2000,
Prague, CZ, June 21-23, 2000.

[15] M. Sternad and A. Ahle�en, Robust Filtering and Feedforward Control Based on Probabilistic De-
scriptions of Model Errors, Automatica, 29, pp. 661-679.

[16] K. Ohrn, A. Ahle�en and M. Sternad, A Probabilistic Approach to Multivariable Robust Filtering
and Open-loop Control, IEEE Transactions on Automatic Control, 40, pp. 405-417.

[17] M. Sternad, M. Johansson, J. Rutstrom, Inversion of Loudspeaker Dynamics by Polynomial LQ
Feedforward Control, Proceedings of the 3rd IFAC Symposium on Robust Control Design ROCOND
2000, Prague, CZ, June 21-23, 2000.

[18] www.signal.uu.se/Sta�/ms/ms.html

[19] Using MATLAB 5.3, The Matrhworks, 1999.

[11] H. Kwakernaak and M. �Sebek: Polynomial Toolbox Home Page, http://www.polyx.cz,

http://www,polyx.com


